Some Operations on Quaternion Numbers
نویسندگان
چکیده
(1) <(z1 · z2) = <(z2 · z1). (2) If z is a real number, then z + z3 = <(z) + <(z3) + =1(z3) · i+ =2(z3) · j + =3(z3) · k. (3) If z is a real number, then z − z3 = 〈<(z)−<(z3),−=1(z3),−=2(z3), −=3(z3)〉H. (4) If z is a real number, then z · z3 = 〈<(z) · <(z3),<(z) · =1(z3),<(z) · =2(z3),<(z) · =3(z3)〉H. (5) If z is a real number, then z · i = 〈0,<(z), 0, 0〉H. (6) If z is a real number, then z · j = 〈0, 0,<(z), 0〉H. (7) If z is a real number, then z · k = 〈0, 0, 0,<(z)〉H. (8) z − 0H = z.
منابع مشابه
Hamburger Beiträge zur Angewandten Mathematik Fast Givens Transformation for Quaternion Valued Matrices Applied to Hessenberg Reductions
In a previous paper we investigated Givens transformations applied to quaternion valued matrices. Since arithmetic operations with quaternions are very costly it is desirable to reduce the number of arithmetic operations with quaternions. We show that the Fast Givens transformation, known for the real case, can also be defined for quaternion valued matrices, and we apply this technique to the r...
متن کاملSome Operations on Quaternion Numbers
In this article, we give some equality and basic theorems about quaternion numbers, and some special operations. the notation and terminology for this paper. In this paper z 1 , z 2 , z 3 , z 4 , z are quaternion numbers. The following propositions are true: (1) (z 1 · z 2) = (z 2 · z 1). (2) If z is a real number, then z + z 3 = (z) + (z 3) + 1 (z 3) · i + 2 (z 3) · j + 3 (z 3) · k. (4) If z i...
متن کاملElectronic Transactions on Numerical Analysis
In a previous paper we investigated Givens transformations applied to quaternion valued matrices. Since arithmetic operations with quaternions are very costly it is desirable to reduce the number of arithmetic operations with quaternions. We show that the Fast Givens transformation, known for the real case, can also be defined for quaternion valued matrices, and we apply this technique to the r...
متن کاملON SOME STRUCTURES OF FUZZY NUMBERS
The operations in the set of fuzzy numbers are usually obtained bythe Zadeh extension principle. But these definitions can have some disadvantagesfor the applications both by an algebraic point of view and by practicalaspects. In fact the Zadeh multiplication is not distributive with respect tothe addition, the shape of fuzzy numbers is not preserved by multiplication,the indeterminateness of t...
متن کاملDomination parameters of Cayley graphs of some groups
In this paper, we investigate domination number, $gamma$, as well as signed domination number, $gamma_{_S}$, of all cubic Cayley graphs of cyclic and quaternion groups. In addition, we show that the domination and signed domination numbers of cubic graphs depend on each other.
متن کاملSome results on higher numerical ranges and radii of quaternion matrices
Let $n$ and $k$ be two positive integers, $kleq n$ and $A$ be an $n$-square quaternion matrix. In this paper, some results on the $k-$numerical range of $A$ are investigated. Moreover, the notions of $k$-numerical radius, right $k$-spectral radius and $k$-norm of $A$ are introduced, and some of their algebraic properties are studied.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Formalized Mathematics
دوره 17 شماره
صفحات -
تاریخ انتشار 2009